EconPapers    
Economics at your fingertips  
 

Likelihood Inferences on Semiparametric Odds Ratio Model

Hua Yun Chen, Daniel E. Rader and Mingyao Li

Journal of the American Statistical Association, 2015, vol. 110, issue 511, 1125-1135

Abstract: A flexible semiparametric odds ratio model has been proposed to unify and to extend both the log-linear model and the joint normal model for data with a mix of discrete and continuous variables. The semiparametric odds ratio model is particularly useful for analyzing biased sampling designs. However, statistical inference of the model has not been systematically studied when more than one nonparametric component is involved in the model. In this article, we study the maximum semiparametric likelihood approach to estimation and inference of the semiparametric odds ratio model. We show that the maximum semiparametric likelihood estimator of the odds ratio parameter is consistent and asymptotically normally distributed. We also establish statistical inference under a misspecified semiparametric odds ratio model, which is important when handling weak identifiability in conditionally specified models under biased sampling designs. We use simulation studies to demonstrate that the proposed approaches have satisfactory finite sample performance. Finally, we illustrate the proposed approach by analyzing multiple traits in a genome-wide association study of high-density lipid protein. Supplementary materials for this article are available online.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.948544 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1125-1135

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.948544

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1125-1135