Regression Analysis of Additive Hazards Model With Latent Variables
Deng Pan,
Haijin He,
Xinyuan Song and
Liuquan Sun
Journal of the American Statistical Association, 2015, vol. 110, issue 511, 1148-1159
Abstract:
We propose an additive hazards model with latent variables to investigate the observed and latent risk factors of the failure time of interest. Each latent risk factor is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a hybrid procedure that combines the expectation-maximization (EM) algorithm and the borrow-strength estimation approach to estimate the model parameters. We establish the consistency and asymptotic normality of the parameter estimators. Various nice features, including finite sample performance of the proposed methodology, are demonstrated by simulation studies. Our model is applied to a study concerning the risk factors of chronic kidney disease for Type 2 diabetic patients. Supplementary materials for this article are available online.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.950083 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1148-1159
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.950083
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().