Estimation of Multiple-Regime Threshold Autoregressive Models With Structural Breaks
Chun Yip Yau,
Chong Man Tang and
Thomas C. M. Lee
Journal of the American Statistical Association, 2015, vol. 110, issue 511, 1175-1186
Abstract:
The threshold autoregressive (TAR) model is a class of nonlinear time series models that have been widely used in many areas. Due to its nonlinear nature, one major difficulty in fitting a TAR model is the estimation of the thresholds. As a first contribution, this article develops an automatic procedure to estimate the number and values of the thresholds, as well as the corresponding AR order and parameter values in each regime. These parameter estimates are defined as the minimizers of an objective function derived from the minimum description length (MDL) principle. A genetic algorithm (GA) is constructed to efficiently solve the associated minimization problem. The second contribution of this article is the extension of this framework to piecewise TAR modeling; that is, the time series is partitioned into different segments for which each segment can be adequately modeled by a TAR model, while models from adjacent segments are different. For such piecewise TAR modeling, a procedure is developed to estimate the number and locations of the breakpoints, together with all other parameters in each segment. Desirable theoretical results are derived to lend support to the proposed methodology. Simulation experiments and an application to an U.S. GNP data are used to illustrate the empirical performances of the methodology. Supplementary materials for this article are available online.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.954706 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1175-1186
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.954706
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().