Likelihood Estimation for the INAR( p ) Model by Saddlepoint Approximation
Xanthi Pedeli,
Anthony C. Davison and
Konstantinos Fokianos
Journal of the American Statistical Association, 2015, vol. 110, issue 511, 1229-1238
Abstract:
Saddlepoint techniques have been used successfully in many applications, owing to the high accuracy with which they can approximate intractable densities and tail probabilities. This article concerns their use for the estimation of high-order integer-valued autoregressive, INAR( p ), processes. Conditional least squares estimation and maximum likelihood estimation have been proposed for INAR( p ) models, but the first is inefficient for estimating parametric models, and the second becomes difficult to implement as the order p increases. We propose a simple saddlepoint approximation to the log-likelihood that performs well even in the tails of the distribution and with complicated INAR models. We consider Poisson and negative binomial innovations, and show empirically that the estimator that maximises the saddlepoint approximation behaves very similarly to the maximum likelihood estimator in realistic settings. The approach is applied to data on meningococcal disease counts. Supplementary materials for this article are available online.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.983230 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1229-1238
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.983230
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().