Clustering High-Dimensional Landmark-Based Two-Dimensional Shape Data
Chao Huang,
Martin Styner and
Hongtu Zhu
Journal of the American Statistical Association, 2015, vol. 110, issue 511, 946-961
Abstract:
An important goal in image analysis is to cluster and recognize objects of interest according to the shapes of their boundaries. Clustering such objects faces at least four major challenges including a curved shape space, a high-dimensional feature space, a complex spatial correlation structure, and shape variation associated with some covariates (e.g., age or gender). The aim of this article is to develop a penalized model-based clustering framework to cluster landmark-based planar shape data, while explicitly addressing these challenges. Specifically, a mixture of offset-normal shape factor analyzers (MOSFA) is proposed with mixing proportions defined through a regression model (e.g., logistic) and an offset-normal shape distribution in each component for data in the curved shape space. A latent factor analysis model is introduced to explicitly model the complex spatial correlation. A penalized likelihood approach with both adaptive pairwise fused Lasso penalty function and L 2 penalty function is used to automatically realize variable selection via thresholding and deliver a sparse solution. Our real data analysis has confirmed the excellent finite-sample performance of MOSFA in revealing meaningful clusters in the corpus callosum shape data obtained from the Attention Deficit Hyperactivity Disorder-200 (ADHD-200) study. Supplementary materials for this article are available online.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1034802 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:511:p:946-961
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2015.1034802
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().