EconPapers    
Economics at your fingertips  
 

Temporal Autocorrelation-Based Beamforming With MEG Neuroimaging Data

Jian Zhang and Li Su

Journal of the American Statistical Association, 2015, vol. 110, issue 512, 1375-1388

Abstract: Characterizing the brain source activity using magnetoencephalography (MEG) requires solving an ill-posed inverse problem. Most source reconstruction procedures are performed in terms of power comparison. However, in the presence of voxel-specific noises, the direct power analysis can be misleading due to the power distortion as suggested by our multiple trial MEG study on a face-perception experiment. To tackle the issue, we propose a temporal autocorrelation-based method for the above analysis. The new method improves the face-perception analysis and identifies several differences between neuronal responses to face and scrambled-face stimuli. By the simulated and real data analyses, we demonstrate that compared to the existing methods, the new proposal can be more robust to voxel-specific noises without compromising on its accuracy in source localization. We further establish the consistency for estimating the proposed index when the number of sensors and the number of time instants are sufficiently large. In particular, we show that the proposed procedure can make a better focus on true sources than its precedents in terms of peak segregation coefficient. Supplementary materials for this article are available online.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1054488 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1375-1388

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1054488

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1375-1388