Robust Filtering
Laurent Calvet,
Veronika Czellar and
Elvezio Ronchetti
Journal of the American Statistical Association, 2015, vol. 110, issue 512, 1591-1606
Abstract:
Filtering methods are powerful tools to estimate the hidden state of a state-space model from observations available in real time. However, they are known to be highly sensitive to the presence of small misspecifications of the underlying model and to outliers in the observation process. In this article, we show that the methodology of robust statistics can be adapted to sequential filtering. We define a filter as being robust if the relative error in the state distribution caused by misspecifications is uniformly bounded by a linear function of the perturbation size. Since standard filters are nonrobust even in the simplest cases, we propose robustified filters which provide accurate state inference in the presence of model misspecifications. The robust particle filter naturally mitigates the degeneracy problems that plague the bootstrap particle filler (Gordon, Salmond, and Smith) and its many extensions. We illustrate the good properties of robust filters in linear and nonlinear state-space examples. Supplementary materials for this article are available online.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.983520 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Robust Filtering (2015)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1591-1606
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.983520
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().