A Permutation Approach to Testing Interactions for Binary Response by Comparing Correlations Between Classes
Noah Simon and
Robert Tibshirani
Journal of the American Statistical Association, 2015, vol. 110, issue 512, 1707-1716
Abstract:
To date testing interactions in high dimensions is a challenging task. Existing methods often have issues with sensitivity to modeling assumptions and heavily asymptotic nominal p -values. To help alleviate these issues, we propose a permutation-based method for testing marginal interactions with a binary response. Our method searches for pairwise correlations that differ between classes. In this article, we compare our method on real and simulated data to the standard approach of running many pairwise logistic models. On simulated data our method finds more significant interactions at a lower false discovery rate (especially in the presence of main effects). On real genomic data, although there is no gold standard, our method finds apparent signal and tells a believable story, while logistic regression does not. We also give asymptotic consistency results under not too restrictive assumptions. Supplementary materials for this article are available online.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.993079 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1707-1716
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.993079
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().