EconPapers    
Economics at your fingertips  
 

Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events

Xiaoyan Sun, Limin Peng, Yijian Huang and HuiChuan J. Lai

Journal of the American Statistical Association, 2016, vol. 111, issue 513, 145-156

Abstract: In survival analysis, quantile regression has become a useful approach to account for covariate effects on the distribution of an event time of interest. In this article, we discuss how quantile regression can be extended to model counting processes and thus lead to a broader regression framework for survival data. We specifically investigate the proposed modeling of counting processes for recurrent events data. We show that the new recurrent events model retains the desirable features of quantile regression such as easy interpretation and good model flexibility, while accommodating various observation schemes encountered in observational studies. We develop a general theoretical and inferential framework for the new counting process model, which unifies with an existing method for censored quantile regression. As another useful contribution of this work, we propose a sample-based covariance estimation procedure, which provides a useful complement to the prevailing bootstrapping approach. We demonstrate the utility of our proposals via simulation studies and an application to a dataset from the U.S. Cystic Fibrosis Foundation Patient Registry (CFFPR). Supplementary materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.995795 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:513:p:145-156

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.995795

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:513:p:145-156