A Potential Tale of Two-by-Two Tables From Completely Randomized Experiments
Peng Ding and
Tirthankar Dasgupta
Journal of the American Statistical Association, 2016, vol. 111, issue 513, 157-168
Abstract:
Causal inference in completely randomized treatment-control studies with binary outcomes is discussed from Fisherian, Neymanian, and Bayesian perspectives, using the potential outcomes model. A randomization-based justification of Fisher’s exact test is provided. Arguing that the crucial assumption of constant causal effect is often unrealistic, and holds only for extreme cases, some new asymptotic and Bayesian inferential procedures are proposed. The proposed procedures exploit the intrinsic nonadditivity of unit-level causal effects, can be applied to linear and nonlinear estimands, and dominate the existing methods, as verified theoretically and also through simulation studies. Supplementary materials for this article are available online.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.995796 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:513:p:157-168
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.995796
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().