EconPapers    
Economics at your fingertips  
 

A Potential Tale of Two-by-Two Tables From Completely Randomized Experiments

Peng Ding and Tirthankar Dasgupta

Journal of the American Statistical Association, 2016, vol. 111, issue 513, 157-168

Abstract: Causal inference in completely randomized treatment-control studies with binary outcomes is discussed from Fisherian, Neymanian, and Bayesian perspectives, using the potential outcomes model. A randomization-based justification of Fisher’s exact test is provided. Arguing that the crucial assumption of constant causal effect is often unrealistic, and holds only for extreme cases, some new asymptotic and Bayesian inferential procedures are proposed. The proposed procedures exploit the intrinsic nonadditivity of unit-level causal effects, can be applied to linear and nonlinear estimands, and dominate the existing methods, as verified theoretically and also through simulation studies. Supplementary materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.995796 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:513:p:157-168

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.995796

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:513:p:157-168