Personalized Prediction and Sparsity Pursuit in Latent Factor Models
Yunzhang Zhu,
Xiaotong Shen and
Changqing Ye
Journal of the American Statistical Association, 2016, vol. 111, issue 513, 241-252
Abstract:
Personalized information filtering extracts the information specifically relevant to a user, predicting his/her preference over a large number of items, based on the opinions of users who think alike or its content. This problem is cast into the framework of regression and classification, where we integrate additional user-specific and content-specific predictors in partial latent models, for higher predictive accuracy. In particular, we factorize a user-over-item preference matrix into a product of two matrices, each representing a user’s preference and an item preference by users. Then we propose a likelihood method to seek a sparsest latent factorization, from a class of overcomplete factorizations, possibly with a high percentage of missing values. This promotes additional sparsity beyond rank reduction. Computationally, we design methods based on a “decomposition and combination” strategy, to break large-scale optimization into many small subproblems to solve in a recursive and parallel manner. On this basis, we implement the proposed methods through multi-platform shared-memory parallel programming, and through Mahout, a library for scalable machine learning and data mining, for mapReduce computation. For example, our methods are scalable to a dataset consisting of three billions of observations on a single machine with sufficient memory, having good timings. Both theoretical and numerical investigations show that the proposed methods exhibit a significant improvement in accuracy over state-of-the-art scalable methods. Supplementary materials for this article are available online.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.999158 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:513:p:241-252
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.999158
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().