Minimax and Adaptive Estimation of Covariance Operator for Random Variables Observed on a Lattice Graph
T. Tony Cai and
Ming Yuan
Journal of the American Statistical Association, 2016, vol. 111, issue 513, 253-265
Abstract:
Covariance structure plays an important role in high-dimensional statistical inference. In a range of applications including imaging analysis and fMRI studies, random variables are observed on a lattice graph. In such a setting, it is important to account for the lattice structure when estimating the covariance operator. In this article, we consider both minimax and adaptive estimation of the covariance operator over collections of polynomially decaying and exponentially decaying parameter spaces. We first establish the minimax rates of convergence for estimating the covariance operator under the operator norm. The results show that the dimension of the lattice graph significantly affects the optimal rates convergence, often much more so than the dimension of the random variables. We then consider adaptive estimation of the covariance operator. A fully data-driven block thresholding procedure is proposed and is shown to be adaptively rate optimal simultaneously over a wide range of polynomially decaying and exponentially decaying parameter spaces. The adaptive block thresholding procedure is easy to implement, and numerical experiments are carried out to illustrate the merit of the procedure. Supplementary materials for this article are available online.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.1001067 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:513:p:253-265
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.1001067
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().