Estimating Variance Components in Functional Linear Models With Applications to Genetic Heritability
Matthew Reimherr and
Dan Nicolae
Journal of the American Statistical Association, 2016, vol. 111, issue 513, 407-422
Abstract:
Quantifying heritability is the first step in understanding the contribution of genetic variation to the risk architecture of complex human diseases and traits. Heritability can be estimated for univariate phenotypes from nonfamily data using linear mixed effects models. There is, however, no fully developed methodology for defining or estimating heritability from longitudinal studies. By examining longitudinal studies, researchers have the opportunity to better understand the genetic influence on the temporal development of diseases, which can be vital for populations with rapidly changing phenotypes such as children or the elderly. To define and estimate heritability for longitudinally measured phenotypes, we present a framework based on functional data analysis, FDA. While our procedures have important genetic consequences, they also represent a substantial development for FDA. In particular, we present a very general methodology for constructing optimal, unbiased estimates of variance components in functional linear models. Such a problem is challenging as likelihoods and densities do not readily generalize to infinite-dimensional settings. Our procedure can be viewed as a functional generalization of the minimum norm quadratic unbiased estimation procedure, MINQUE, presented by C. R. Rao, and is equivalent to residual maximum likelihood, REML, in univariate settings. We apply our methodology to the Childhood Asthma Management Program, CAMP, a 4-year longitudinal study examining the long term effects of daily asthma medications on children.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1016224 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:513:p:407-422
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2015.1016224
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().