EconPapers    
Economics at your fingertips  
 

Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes

Eric W. Fox, Martin B. Short, Frederic P. Schoenberg, Kathryn D. Coronges and Andrea L. Bertozzi

Journal of the American Statistical Association, 2016, vol. 111, issue 514, 564-584

Abstract: We propose various self-exciting point process models for the times when e-mails are sent between individuals in a social network. Using an expectation–maximization (EM)-type approach, we fit these models to an e-mail network dataset from West Point Military Academy and the Enron e-mail dataset. We argue that the self-exciting models adequately capture major temporal clustering features in the data and perform better than traditional stationary Poisson models. We also investigate how accounting for diurnal and weekly trends in e-mail activity improves the overall fit to the observed network data. A motivation and application for fitting these self-exciting models is to use parameter estimates to characterize important e-mail communication behaviors such as the baseline sending rates, average reply rates, and average response times. A primary goal is to use these features, estimated from the self-exciting models, to infer the underlying leadership status of users in the West Point and Enron networks. Supplementary materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1135802 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:514:p:564-584

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1135802

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:564-584