EconPapers    
Economics at your fingertips  
 

Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem

Long Feng, Changliang Zou and Zhaojun Wang

Journal of the American Statistical Association, 2016, vol. 111, issue 514, 721-735

Abstract: This article concerns tests for the two-sample location problem when data dimension is larger than the sample size. Existing multivariate-sign-based procedures are not robust against high dimensionality, producing tests with Type I error rates far away from nominal levels. This is mainly due to the biases from estimating location parameters. We propose a novel test to overcome this issue by using the “leave-one-out” idea. The proposed test statistic is scalar-invariant and thus is particularly useful when different components have different scales in high-dimensional data. Asymptotic properties of the test statistic are studied. Compared with other existing approaches, simulation studies show that the proposed method behaves well in terms of sizes and power. Supplementary materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1035380 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:514:p:721-735

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1035380

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:721-735