EconPapers    
Economics at your fingertips  
 

I-Optimal Design of Mixture Experiments

Peter Goos (), Bradley Jones and Utami Syafitri

Journal of the American Statistical Association, 2016, vol. 111, issue 514, 899-911

Abstract: In mixture experiments, the factors under study are proportions of the ingredients of a mixture. The special nature of the factors necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal design. This is surprising given that I-optimal designs minimize the average variance of prediction and, therefore, seem more appropriate for mixture experiments than the commonly used D-optimal designs, which focus on a precise model estimation rather than precise predictions. In this article, we provide the first detailed overview of the literature on the I-optimal design of mixture experiments and identify several contradictions. For the second-order and the special cubic model, we present continuous I-optimal designs and contrast them with the published results. We also study exact I-optimal designs, and compare them in detail to continuous I-optimal designs and to D-optimal designs. One striking result of our work is that the performance of D-optimal designs in terms of the I-optimality criterion very strongly depends on which of the D-optimal designs is considered. Supplemental materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1136632 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:514:p:899-911

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1136632

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:899-911