EconPapers    
Economics at your fingertips  
 

Brownian Integrated Covariance Functions for Gaussian Process Modeling: Sigmoidal Versus Localized Basis Functions

Ning Zhang and Daniel W. Apley

Journal of the American Statistical Association, 2016, vol. 111, issue 515, 1182-1195

Abstract: Gaussian process modeling, or kriging, is a popular method for modeling data from deterministic computer simulations, and the most common choices of covariance function are Gaussian, power exponential, and Matérn. A characteristic of these covariance functions is that the basis functions associated with their corresponding response predictors are localized, in the sense that they decay to zero as the input location moves away from the simulated input sites. As a result, the predictors tend to revert to the prior mean, which can result in a bumpy fitted response surface. In contrast, a fractional Brownian field model results in a predictor with basis functions that are nonlocalized and more sigmoidal in shape, although it suffers from drawbacks such as inability to represent smooth response surfaces. We propose a class of Brownian integrated covariance functions obtained by incorporating an integrator (as in the white noise integral representation of a fractional Brownian field) into any stationary covariance function. Brownian integrated covariance models result in predictor basis functions that are nonlocalized and sigmoidal, but they are capable of modeling smooth response surfaces. We discuss fundamental differences between Brownian integrated and other covariance functions, and we illustrate by comparing Brownian integrated power exponential with regular power exponential kriging models in a number of examples. Supplementary materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1077711 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1182-1195

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1077711

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1182-1195