EconPapers    
Economics at your fingertips  
 

Dynamic Covariance Models

Ziqi Chen and Chenlei Leng

Journal of the American Statistical Association, 2016, vol. 111, issue 515, 1196-1207

Abstract: An important problem in contemporary statistics is to understand the relationship among a large number of variables based on a dataset, usually with p, the number of the variables, much larger than n, the sample size. Recent efforts have focused on modeling static covariance matrices where pairwise covariances are considered invariant. In many real systems, however, these pairwise relations often change. To characterize the changing correlations in a high-dimensional system, we study a class of dynamic covariance models (DCMs) assumed to be sparse, and investigate for the first time a unified theory for understanding their nonasymptotic error rates and model selection properties. In particular, in the challenging high-dimensional regime, we highlight a new uniform consistency theory in which the sample size can be seen as n4/5 when the bandwidth parameter is chosen as h∝n− 1/5 for accounting for the dynamics. We show that this result holds uniformly over a range of the variable used for modeling the dynamics. The convergence rate bears the mark of the familiar bias-variance trade-off in the kernel smoothing literature. We illustrate the results with simulations and the analysis of a neuroimaging dataset. Supplementary materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1077712 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1196-1207

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1077712

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1196-1207