EconPapers    
Economics at your fingertips  
 

Comment

Jingxiang Chen, Yufeng Liu, Donglin Zeng, Rui Song, Yingqi Zhao and Michael R. Kosorok

Journal of the American Statistical Association, 2016, vol. 111, issue 515, 942-947

Abstract: Xu, Müller, Wahed, and Thall proposed a Bayesian model to analyze an acute leukemia study involving multi-stage chemotherapy regimes. We discuss two alternative methods, Q-learning and O-learning, to solve the same problem from the machine learning point of view. The numerical studies show that these methods can be flexible and have advantages in some situations to handle treatment heterogeneity while being robust to model misspecification.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1200914 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:515:p:942-947

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1200914

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:942-947