Template-Based Models for Genome-Wide Analysis of Next-Generation Sequencing Data at Base-Pair Resolution
Alexander W. Blocker and
Edoardo M. Airoldi
Journal of the American Statistical Association, 2016, vol. 111, issue 515, 967-987
Abstract:
We consider the problem of estimating the genome-wide distribution of nucleosome positions from paired-end sequencing data. We develop a modeling approach based on nonparametric templates to control for the variability along the sequence of read counts associated with nucleosomal DNA due to enzymatic digestion and other sample preparation steps, and we develop a calibrated Bayesian method to detect local concentrations of nucleosome positions. We also introduce a set of estimands that provides rich, interpretable summaries of nucleosome positioning. Inference is carried out via a distributed Hamiltonian Monte Carlo algorithm that can scale linearly with the length of the genome being analyzed. We provide MPI-based Python implementations of the proposed methods, stand-alone and on Amazon EC2, which can provide inferences on an entire Saccharomyces cerevisiae genome in less than 1 hr on EC2. We evaluate the accuracy and reproducibility of the inferences leveraging a factorially designed simulation study and experimental replicates. The template-based approach we develop here is also applicable to single-end sequencing data by using alternative sources of fragment length information, and to ordered and sequential data more generally. It provides a flexible and scalable alternative to mixture models, hidden Markov models, and Parzen-window methods. Supplementary materials for this article are available online.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1141095 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:515:p:967-987
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1141095
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().