EconPapers    
Economics at your fingertips  
 

Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence

Jared S. Murray and Jerome P. Reiter

Journal of the American Statistical Association, 2016, vol. 111, issue 516, 1466-1479

Abstract: We present a nonparametric Bayesian joint model for multivariate continuous and categorical variables, with the intention of developing a flexible engine for multiple imputation of missing values. The model fuses Dirichlet process mixtures of multinomial distributions for categorical variables with Dirichlet process mixtures of multivariate normal distributions for continuous variables. We incorporate dependence between the continuous and categorical variables by (1) modeling the means of the normal distributions as component-specific functions of the categorical variables and (2) forming distinct mixture components for the categorical and continuous data with probabilities that are linked via a hierarchical model. This structure allows the model to capture complex dependencies between the categorical and continuous data with minimal tuning by the analyst. We apply the model to impute missing values due to item nonresponse in an evaluation of the redesign of the Survey of Income and Program Participation (SIPP). The goal is to compare estimates from a field test with the new design to estimates from selected individuals from a panel collected under the old design. We show that accounting for the missing data changes some conclusions about the comparability of the distributions in the two datasets. We also perform an extensive repeated sampling simulation using similar data from complete cases in an existing SIPP panel, comparing our proposed model to a default application of multiple imputation by chained equations. Imputations based on the proposed model tend to have better repeated sampling properties than the default application of chained equations in this realistic setting. Supplementary materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1174132 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1466-1479

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1174132

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1466-1479