Localizing Temperature Risk
Wolfgang Härdle,
Brenda López Cabrera,
Ostap Okhrin and
Weining Wang
Journal of the American Statistical Association, 2016, vol. 111, issue 516, 1491-1508
Abstract:
On the temperature derivative market, modeling temperature volatility is an important issue for pricing and hedging. To apply the pricing tools of financial mathematics, one needs to isolate a Gaussian risk factor. A conventional model for temperature dynamics is a stochastic model with seasonality and intertemporal autocorrelation. Empirical work based on seasonality and autocorrelation correction reveals that the obtained residuals are heteroscedastic with a periodic pattern. The object of this research is to estimate this heteroscedastic function so that, after scale normalization, a pure standardized Gaussian variable appears. Earlier works investigated temperature risk in different locations and showed that neither parametric component functions nor a local linear smoother with constant smoothing parameter are flexible enough to generally describe the variance process well. Therefore, we consider a local adaptive modeling approach to find, at each time point, an optimal smoothing parameter to locally estimate the seasonality and volatility. Our approach provides a more flexible and accurate fitting procedure for localized temperature risk by achieving nearly normal risk factors. We also employ our model to forecast the temperaturein different cities and compare it to a model developed in 2005 by Campbell and Diebold. Supplementary materials for this article are available online.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1180985 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Localising temperature risk (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1491-1508
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1180985
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().