Identifiability of Normal and Normal Mixture Models with Nonignorable Missing Data
Wang Miao,
Peng Ding and
Zhi Geng
Journal of the American Statistical Association, 2016, vol. 111, issue 516, 1673-1683
Abstract:
Missing data problems arise in many applied research studies. They may jeopardize statistical inference of the model of interest, if the missing mechanism is nonignorable, that is, the missing mechanism depends on the missing values themselves even conditional on the observed data. With a nonignorable missing mechanism, the model of interest is often not identifiable without imposing further assumptions. We find that even if the missing mechanism has a known parametric form, the model is not identifiable without specifying a parametric outcome distribution. Although it is fundamental for valid statistical inference, identifiability under nonignorable missing mechanisms is not established for many commonly used models. In this article, we first demonstrate identifiability of the normal distribution under monotone missing mechanisms. We then extend it to the normal mixture and t mixture models with nonmonotone missing mechanisms. We discover that models under the Logistic missing mechanism are less identifiable than those under the Probit missing mechanism. We give necessary and sufficient conditions for identifiability of models under the Logistic missing mechanism, which sometimes can be checked in real data analysis. We illustrate our methods using a series of simulations, and apply them to a real-life dataset. Supplementary materials for this article are available online.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1105808 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1673-1683
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2015.1105808
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().