EconPapers    
Economics at your fingertips  
 

On SURE-Type Double Shrinkage Estimation

Bing-Yi Jing, Zhouping Li, Guangming Pan and Wang Zhou

Journal of the American Statistical Association, 2016, vol. 111, issue 516, 1696-1704

Abstract: The article is concerned with empirical Bayes shrinkage estimators for the heteroscedastic hierarchical normal model using Stein's unbiased estimate of risk (SURE). Recently, Xie, Kou, and Brown proposed a class of estimators for this type of problems and established their asymptotic optimality properties under the assumption of known but unequal variances. In this article, we consider this problem with unequal and unknown variances, which may be more appropriate in real situations. By placing priors for both means and variances, we propose novel SURE-type double shrinkage estimators that shrink both means and variances. Optimal properties for these estimators are derived under certain regularity conditions. Extensive simulation studies are conducted to compare the newly developed methods with other shrinkage techniques. Finally, the methods are applied to the well-known baseball dataset and a gene expression dataset. Supplementary materials for this article are available online.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1110032 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1696-1704

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1110032

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1696-1704