EconPapers    
Economics at your fingertips  
 

Sparse Approximate Inference for Spatio-Temporal Point Process Models

Botond Cseke, Andrew Zammit-Mangion, Tom Heskes and Guido Sanguinetti

Journal of the American Statistical Association, 2016, vol. 111, issue 516, 1746-1763

Abstract: Spatio-temporal log-Gaussian Cox process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computationally challenging both due to the high-resolution modeling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretized log-Gaussian Cox process models by using approximate message-passing algorithms. The proposed algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both nonlinear filtering-smoothing type algorithms and to approaches that implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We infer the parameters of the latent Gaussian model using a structured variational Bayes approach. We demonstrate the proposed framework on simulation studies with both Gaussian and point-process observations and use it to reconstruct the conflict intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary. Supplementary materials for this article are available online.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1115357 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1746-1763

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1115357

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1746-1763