EconPapers    
Economics at your fingertips  
 

Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach

Brenda López Cabrera and Franziska Schulz

Journal of the American Statistical Association, 2017, vol. 112, issue 517, 127-136

Abstract: Electricity load forecasts are an integral part of many decision-making processes in the electricity market. However, most literature on electricity load forecasting concentrates on deterministic forecasts, neglecting possibly important information about uncertainty. A more complete picture of future demand can be obtained by using distributional forecasts, allowing for more efficient decision-making. A predictive density can be fully characterized by tail measures such as quantiles and expectiles. Furthermore, interest often lies in the accurate estimation of tail events rather than in the mean or median. We propose a new methodology to obtain probabilistic forecasts of electricity load that is based on functional data analysis of generalized quantile curves. The core of the methodology is dimension reduction based on functional principal components of tail curves with dependence structure. The approach has several advantages, such as flexible inclusion of explanatory variables like meteorological forecasts and no distributional assumptions. The methodology is applied to load data from a transmission system operator (TSO) and a balancing unit in Germany. Our forecast method is evaluated against other models including the TSO forecast model. It outperforms them in terms of mean absolute percentage error and mean squared error. Supplementary materials for this article are available online.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1219259 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: Forecasting generalized quantiles of electricity demand: A functional data approach (2014) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:127-136

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1219259

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-31
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:127-136