Residual Weighted Learning for Estimating Individualized Treatment Rules
Xin Zhou,
Nicole Mayer-Hamblett,
Umer Khan and
Michael R. Kosorok
Journal of the American Statistical Association, 2017, vol. 112, issue 517, 169-187
Abstract:
Personalized medicine has received increasing attention among statisticians, computer scientists, and clinical practitioners. A major component of personalized medicine is the estimation of individualized treatment rules (ITRs). Recently, Zhao et al. proposed outcome weighted learning (OWL) to construct ITRs that directly optimize the clinical outcome. Although OWL opens the door to introducing machine learning techniques to optimal treatment regimes, it still has some problems in performance. (1) The estimated ITR of OWL is affected by a simple shift of the outcome. (2) The rule from OWL tries to keep treatment assignments that subjects actually received. (3) There is no variable selection mechanism with OWL. All of them weaken the finite sample performance of OWL. In this article, we propose a general framework, called residual weighted learning (RWL), to alleviate these problems, and hence to improve finite sample performance. Unlike OWL which weights misclassification errors by clinical outcomes, RWL weights these errors by residuals of the outcome from a regression fit on clinical covariates excluding treatment assignment. We use the smoothed ramp loss function in RWL and provide a difference of convex (d.c.) algorithm to solve the corresponding nonconvex optimization problem. By estimating residuals with linear models or generalized linear models, RWL can effectively deal with different types of outcomes, such as continuous, binary, and count outcomes. We also propose variable selection methods for linear and nonlinear rules, respectively, to further improve the performance. We show that the resulting estimator of the treatment rule is consistent. We further obtain a rate of convergence for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed RWL methods is illustrated in simulation studies and in an analysis of cystic fibrosis clinical trial data. Supplementary materials for this article are available online.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1093947 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:169-187
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2015.1093947
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().