A Multi-Resolution Approximation for Massive Spatial Datasets
Matthias Katzfuss
Journal of the American Statistical Association, 2017, vol. 112, issue 517, 201-214
Abstract:
Automated sensing instruments on satellites and aircraft have enabled the collection of massive amounts of high-resolution observations of spatial fields over large spatial regions. If these datasets can be efficiently exploited, they can provide new insights on a wide variety of issues. However, traditional spatial-statistical techniques such as kriging are not computationally feasible for big datasets. We propose a multi-resolution approximation (M-RA) of Gaussian processes observed at irregular locations in space. The M-RA process is specified as a linear combination of basis functions at multiple levels of spatial resolution, which can capture spatial structure from very fine to very large scales. The basis functions are automatically chosen to approximate a given covariance function, which can be nonstationary. All computations involving the M-RA, including parameter inference and prediction, are highly scalable for massive datasets. Crucially, the inference algorithms can also be parallelized to take full advantage of large distributed-memory computing environments. In comparisons using simulated data and a large satellite dataset, the M-RA outperforms a related state-of-the-art method. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1123632 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:201-214
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2015.1123632
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().