EconPapers    
Economics at your fingertips  
 

A Dynamic Structure for High-Dimensional Covariance Matrices and Its Application in Portfolio Allocation

Shaojun Guo, John Leigh Box and Wenyang Zhang

Journal of the American Statistical Association, 2017, vol. 112, issue 517, 235-253

Abstract: Estimation of high-dimensional covariance matrices is an interesting and important research topic. In this article, we propose a dynamic structure and develop an estimation procedure for high-dimensional covariance matrices. Asymptotic properties are derived to justify the estimation procedure and simulation studies are conducted to demonstrate its performance when the sample size is finite. By exploring a financial application, an empirical study shows that portfolio allocation based on dynamic high-dimensional covariance matrices can significantly outperform the market from 1995 to 2014. Our proposed method also outperforms portfolio allocation based on the sample covariance matrix, the covariance matrix based on factor models, and the shrinkage estimator of covariance matrix. Supplementary materials for this article are available online.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1129969 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:235-253

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1129969

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:235-253