Nonlocal Priors for High-Dimensional Estimation
David Rossell and
Donatello Telesca
Journal of the American Statistical Association, 2017, vol. 112, issue 517, 254-265
Abstract:
Jointly achieving parsimony and good predictive power in high dimensions is a main challenge in statistics. Nonlocal priors (NLPs) possess appealing properties for model choice, but their use for estimation has not been studied in detail. We show that for regular models NLP-based Bayesian model averaging (BMA) shrink spurious parameters either at fast polynomial or quasi-exponential rates as the sample size n increases, while nonspurious parameter estimates are not shrunk. We extend some results to linear models with dimension p growing with n. Coupled with our theoretical investigations, we outline the constructive representation of NLPs as mixtures of truncated distributions that enables simple posterior sampling and extending NLPs beyond previous proposals. Our results show notable high-dimensional estimation for linear models with p > >n at low computational cost. NLPs provided lower estimation error than benchmark and hyper-g priors, SCAD and LASSO in simulations, and in gene expression data achieved higher cross-validated R2 with less predictors. Remarkably, these results were obtained without prescreening variables. Our findings contribute to the debate of whether different priors should be used for estimation and model selection, showing that selection priors may actually be desirable for high-dimensional estimation. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1130634 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:254-265
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2015.1130634
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().