Conditions for Ignoring the Missing-Data Mechanism in Likelihood Inferences for Parameter Subsets
Roderick J. Little,
Donald B. Rubin and
Sahar Z. Zangeneh
Journal of the American Statistical Association, 2017, vol. 112, issue 517, 314-320
Abstract:
For likelihood-based inferences from data with missing values, models are generally needed for both the data and the missing-data mechanism. However, modeling the mechanism can be challenging, and parameters are often poorly identified. Rubin in 1976 showed that for likelihood and Bayesian inference, sufficient conditions for ignoring the missing data mechanism are (a) the missing data are missing at random (MAR), in the sense that missingness does not depend on the missing values after conditioning on the observed data and (b) the parameters of the data model and the missingness mechanism are distinct, that is, there are no a priori ties, via parameter space restrictions or prior distributions, between these two sets of parameters. These conditions are sufficient but not always necessary, and they relate to the full vector of parameters of the data model. We propose definitions of partially MAR and ignorability for a subvector of the parameters of particular substantive interest, for direct likelihood/Bayesian and frequentist likelihood-based inference. We apply these definitions to a variety of examples. We also discuss conditioning on the pattern of missingness, as an alternative strategy for avoiding the need to model the missingness mechanism.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1136826 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:314-320
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2015.1136826
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().