Randomization Inference and Sensitivity Analysis for Composite Null Hypotheses With Binary Outcomes in Matched Observational Studies
Colin B. Fogarty,
Pixu Shi,
Mark E. Mikkelsen and
Dylan S. Small
Journal of the American Statistical Association, 2017, vol. 112, issue 517, 321-331
Abstract:
We present methods for conducting hypothesis testing and sensitivity analyses for composite null hypotheses in matched observational studies when outcomes are binary. Causal estimands discussed include the causal risk difference, causal risk ratio, and the effect ratio. We show that inference under the assumption of no unmeasured confounding can be performed by solving an integer linear program, while inference allowing for unmeasured confounding of a given strength requires solving an integer quadratic program. Through simulation studies and data examples, we demonstrate that our formulation allows these problems to be solved in an expedient manner even for large datasets and for large strata. We further exhibit that through our formulation, one can assess the impact of various assumptions about the potential outcomes on the performed inference. R scripts are provided that implement our methods. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1138865 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:321-331
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1138865
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().