EconPapers    
Economics at your fingertips  
 

Shrinkage Estimation for Multivariate Hidden Markov Models

Mark Fiecas, Jürgen Franke, Rainer von Sachs and Joseph Tadjuidje Kamgaing

Journal of the American Statistical Association, 2017, vol. 112, issue 517, 424-435

Abstract: Motivated from a changing market environment over time, we consider high-dimensional data such as financial returns, generated by a hidden Markov model that allows for switching between different regimes or states. To get more stable estimates of the covariance matrices of the different states, potentially driven by a number of observations that are small compared to the dimension, we modify the expectation–maximization (EM) algorithm so that it yields the shrinkage estimators for the covariance matrices. The final algorithm turns out to reproduce better estimates not only for the covariance matrices but also for the transition matrix. It results into a more stable and reliable filter that allows for reconstructing the values of the hidden Markov chain. In addition to a simulation study performed in this article, we also present a series of theoretical results that include dimensionality asymptotics and provide the motivation for certain techniques used in the algorithm. Supplementary materials for this article are available online.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1148608 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:424-435

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1148608

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:424-435