EconPapers    
Economics at your fingertips  
 

Landmark-Constrained Elastic Shape Analysis of Planar Curves

Justin Strait, Sebastian Kurtek, Emily Bartha and Steven N. MacEachern

Journal of the American Statistical Association, 2017, vol. 112, issue 518, 521-533

Abstract: Various approaches to statistical shape analysis exist in current literature. They mainly differ in the representations, metrics, and/or methods for alignment of shapes. One such approach is based on landmarks, that is, mathematically or structurally meaningful points, which ignores the remaining outline information. Elastic shape analysis, a more recent approach, attempts to fix this by using a special functional representation of the parametrically defined outline to perform shape registration, and subsequent statistical analyses. However, the lack of landmark identification can lead to unnatural alignment, particularly in biological and medical applications, where certain features are crucial to shape structure, comparison, and modeling. The main contribution of this work is the definition of a joint landmark-constrained elastic statistical shape analysis framework. We treat landmark points as constraints in the full shape analysis process. Thus, we inherit benefits of both methods: the landmarks help disambiguate shape alignment when the fully automatic elastic shape analysis framework produces unsatisfactory solutions. We provide standard statistical tools on the landmark-constrained shape space including mean and covariance calculation, classification, clustering, and tangent principal component analysis (PCA). We demonstrate the benefits of the proposed framework on complex shapes from the MPEG-7 dataset and two real data examples: mice T2 vertebrae and Hawaiian Drosophila fly wings. Supplementary materials for this article are available online.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1236726 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:518:p:521-533

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1236726

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:521-533