Interactive -Learning for Quantiles
Kristin A. Linn,
Eric B. Laber and
Leonard A. Stefanski
Journal of the American Statistical Association, 2017, vol. 112, issue 518, 638-649
Abstract:
A dynamic treatment regime is a sequence of decision rules, each of which recommends treatment based on features of patient medical history such as past treatments and outcomes. Existing methods for estimating optimal dynamic treatment regimes from data optimize the mean of a response variable. However, the mean may not always be the most appropriate summary of performance. We derive estimators of decision rules for optimizing probabilities and quantiles computed with respect to the response distribution for two-stage, binary treatment settings. This enables estimation of dynamic treatment regimes that optimize the cumulative distribution function of the response at a prespecified point or a prespecified quantile of the response distribution such as the median. The proposed methods perform favorably in simulation experiments. We illustrate our approach with data from a sequentially randomized trial where the primary outcome is remission of depression symptoms. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1155993 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:518:p:638-649
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1155993
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().