EconPapers    
Economics at your fingertips  
 

A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data

Qingning Zhou, Tao Hu and Jianguo Sun

Journal of the American Statistical Association, 2017, vol. 112, issue 518, 664-672

Abstract: Interval-censored failure time data arise in a number of fields and many authors have discussed various issues related to their analysis. However, most of the existing methods are for univariate data and there exists only limited research on bivariate data, especially on regression analysis of bivariate interval-censored data. We present a class of semiparametric transformation models for the problem and for inference, a sieve maximum likelihood approach is developed. The model provides a great flexibility, in particular including the commonly used proportional hazards model as a special case, and in the approach, Bernstein polynomials are employed. The strong consistency and asymptotic normality of the resulting estimators of regression parameters are established and furthermore, the estimators are shown to be asymptotically efficient. Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. Supplementary materials for this article are available online.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1158113 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:518:p:664-672

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1158113

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:664-672