Hierarchical Latin Hypercube Sampling
Vikram V. Garg and
Roy H. Stogner
Journal of the American Statistical Association, 2017, vol. 112, issue 518, 673-682
Abstract:
Latin hypercube sampling (LHS) is a robust, scalable Monte Carlo method that is used in many areas of science and engineering. We present a new algorithm for generating hierarchic Latin hypercube sets (HLHS) that are recursively divisible into LHS subsets. Based on this new construction, we introduce a hierarchical incremental LHS (HILHS) method that allows the user to employ LHS in a flexibly incremental setting. This overcomes a drawback of many LHS schemes that require the entire sample set to be selected a priori, or only allow very large increments. We derive the sampling properties for HLHS designs and HILHS estimators. We also present numerical studies that showcase the flexible incrementation offered by HILHS.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1158717 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:518:p:673-682
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1158717
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().