Simultaneous Inference for High-Dimensional Linear Models
Xianyang Zhang and
Guang Cheng
Journal of the American Statistical Association, 2017, vol. 112, issue 518, 757-768
Abstract:
This article proposes a bootstrap-assisted procedure to conduct simultaneous inference for high-dimensional sparse linear models based on the recent desparsifying Lasso estimator. Our procedure allows the dimension of the parameter vector of interest to be exponentially larger than sample size, and it automatically accounts for the dependence within the desparsifying Lasso estimator. Moreover, our simultaneous testing method can be naturally coupled with the margin screening to enhance its power in sparse testing with a reduced computational cost, or with the step-down method to provide a strong control for the family-wise error rate. In theory, we prove that our simultaneous testing procedure asymptotically achieves the prespecified significance level, and enjoys certain optimality in terms of its power even when the model errors are non-Gaussian. Our general theory is also useful in studying the support recovery problem. To broaden the applicability, we further extend our main results to generalized linear models with convex loss functions. The effectiveness of our methods is demonstrated via simulation studies. Supplementary materials for this article are available online.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1166114 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:518:p:757-768
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1166114
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().