Nonparametric Benefit–Risk Assessment Using Marker Process in the Presence of a Terminal Event
Yifei Sun,
Chiung-Yu Huang and
Mei-Cheng Wang
Journal of the American Statistical Association, 2017, vol. 112, issue 518, 826-836
Abstract:
Benefit–risk assessment is a crucial step in medical decision process. In many biomedical studies, both longitudinal marker measurements and time to a terminal event serve as important endpoints for benefit–risk assessment. The effect of an intervention or a treatment on the longitudinal marker process, however, can be in conflict with its effect on the time to the terminal event. Thus, questions arise on how to evaluate treatment effects based on the two endpoints, for the purpose of deciding on which treatment is most likely to benefit the patients. In this article, we present a unified framework for benefit–risk assessment using the observed longitudinal markers and time to event data. We propose a cumulative weighted marker process to synthesize information from the two endpoints, and use its mean function at a prespecified time point as a benefit–risk summary measure. We consider nonparametric estimation of the summary measure under two scenarios: (i) the longitudinal marker is measured intermittently during the study period, and (ii) the value of the longitudinal marker is observed throughout the entire follow-up period. The large-sample properties of the estimators are derived and compared. Simulation studies and data examples exhibit that the proposed methods are easy to implement and reliable for practical use. Supplemental materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1180988 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:518:p:826-836
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1180988
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().