Accumulation Tests for FDR Control in Ordered Hypothesis Testing
Ang Li and
Rina Foygel Barber
Journal of the American Statistical Association, 2017, vol. 112, issue 518, 837-849
Abstract:
Multiple testing problems arising in modern scientific applications can involve simultaneously testing thousands or even millions of hypotheses, with relatively few true signals. In this article, we consider the multiple testing problem where prior information is available (for instance, from an earlier study under different experimental conditions), that can allow us to test the hypotheses as a ranked list to increase the number of discoveries. Given an ordered list of n hypotheses, the aim is to select a data-dependent cutoff k and declare the first k hypotheses to be statistically significant while bounding the false discovery rate (FDR). Generalizing several existing methods, we develop a family of “accumulation tests” to choose a cutoff k that adapts to the amount of signal at the top of the ranked list. We introduce a new method in this family, the HingeExp method, which offers higher power to detect true signals compared to existing techniques. Our theoretical results prove that these methods control a modified FDR on finite samples, and characterize the power of the methods in the family. We apply the tests to simulated data, including a high-dimensional model selection problem for linear regression. We also compare accumulation tests to existing methods for multiple testing on a real data problem of identifying differential gene expression over a dosage gradient. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1180989 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:518:p:837-849
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1180989
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().