Multiscale Spatial Density Smoothing: An Application to Large-Scale Radiological Survey and Anomaly Detection
Wesley Tansey,
Alex Athey,
Alex Reinhart and
James G. Scott
Journal of the American Statistical Association, 2017, vol. 112, issue 519, 1047-1063
Abstract:
We consider the problem of estimating a spatially varying density function, motivated by problems that arise in large-scale radiological survey and anomaly detection. In this context, the density functions to be estimated are the background gamma-ray energy spectra at sites spread across a large geographical area, such as nuclear production and waste-storage sites, military bases, medical facilities, university campuses, or the downtown of a city. Several challenges combine to make this a difficult problem. First, the spectral density at any given spatial location may have both smooth and nonsmooth features. Second, the spatial correlation in these density functions is neither stationary nor locally isotropic. Finally, at some spatial locations, there are very little data. We present a method called multiscale spatial density smoothing that successfully addresses these challenges. The method is based on recursive dyadic partition of the sample space, and therefore shares much in common with other multiscale methods, such as wavelets and Pólya-tree priors. We describe an efficient algorithm for finding a maximum a posteriori (MAP) estimate that leverages recent advances in convex optimization for nonsmooth functions.We apply multiscale spatial density smoothing to real data collected on the background gamma-ray spectra at locations across a large university campus. The method exhibits state-of-the-art performance for spatial smoothing in density estimation, and it leads to substantial improvements in power when used in conjunction with existing methods for detecting the kinds of radiological anomalies that may have important consequences for public health and safety.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1276461 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1047-1063
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1276461
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().