Robust Permutation Tests For Correlation And Regression Coefficients
Cyrus J. DiCiccio and
Joseph P. Romano
Journal of the American Statistical Association, 2017, vol. 112, issue 519, 1211-1220
Abstract:
Given a sample from a bivariate distribution, consider the problem of testing independence. A permutation test based on the sample correlation is known to be an exact level α test. However, when used to test the null hypothesis that the samples are uncorrelated, the permutation test can have rejection probability that is far from the nominal level. Further, the permutation test can have a large Type 3 (directional) error rate, whereby there can be a large probability that the permutation test rejects because the sample correlation is a large positive value, when in fact the true correlation is negative. It will be shown that studentizing the sample correlation leads to a permutation test which is exact under independence and asymptotically controls the probability of Type 1 (or Type 3) errors. These conclusions are based on our results describing the almost sure limiting behavior of the randomization distribution. We will also present asymptotically robust randomization tests for regression coefficients, including a result based on a modified procedure of Freedman and Lane. Simulations and empirical applications are included. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1202117 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1211-1220
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1202117
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().