Semiparametric Inference in a Genetic Mixture Model
Pengfei Li,
Yukun Liu and
Jing Qin
Journal of the American Statistical Association, 2017, vol. 112, issue 519, 1250-1260
Abstract:
In genetic backcross studies, data are often collected from complex mixtures of distributions with known mixing proportions. Previous approaches to the inference of these genetic mixture models involve parameterizing the component distributions. However, model misspecification of any form is expected to have detrimental effects. We propose a semiparametric likelihood method for genetic mixture models: the empirical likelihood under the exponential tilting model assumption, in which the log ratio of the probability (density) functions from the components is linear in the observations. An application to mice cancer genetics involves random numbers of offspring within a litter. In other words, the cluster size is a random variable. We wish to test the null hypothesis that there is no difference between the two components in the mixture model, but unfortunately we find that the Fisher information is degenerate. As a consequence, the conventional two-term expansion in the likelihood ratio statistic does not work. By using a higher-order expansion, we are able to establish a nonstandard convergence rate N− 1/4 for the odds ratio parameter estimator β^$\hat{\beta }$. Moreover, the limiting distribution of the empirical likelihood ratio statistic is derived. The underlying distribution function of each component can also be estimated semiparametrically. Analogously to the full parametric approach, we develop an expectation and maximization algorithm for finding the semiparametric maximum likelihood estimator. Simulation results and a real cancer application indicate that the proposed semiparametric method works much better than parametric methods. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1208614 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1250-1260
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1208614
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().