EconPapers    
Economics at your fingertips  
 

Bayesian Calibration of Inexact Computer Models

Matthew Plumlee

Journal of the American Statistical Association, 2017, vol. 112, issue 519, 1274-1285

Abstract: Bayesian calibration is used to study computer models in the presence of both a calibration parameter and model bias. The parameter in the predominant methodology is left undefined. This results in an issue, where the posterior of the parameter is suboptimally broad. There has been no generally accepted alternatives to date. This article proposes using Bayesian calibration, where the prior distribution on the bias is orthogonal to the gradient of the computer model. Problems associated with Bayesian calibration are shown to be mitigated through analytic results in addition to examples. Supplementary materials for this article are available online.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1211016 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1274-1285

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1211016

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1274-1285