An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model
Ming-Yueh Huang and
Chin-Tsang Chiang
Journal of the American Statistical Association, 2017, vol. 112, issue 519, 1296-1310
Abstract:
In the exploratory data analysis, the sufficient dimension reduction model has been widely used to characterize the conditional distribution of interest. Different from the existing approaches, our main achievement is to simultaneously estimate two essential elements, basis and structural dimension, of the central subspace and the bandwidth of a kernel distribution estimator through a single estimation criterion. With an appropriate order of kernel function, the proposed estimation procedure can be effectively carried out by starting with a dimension of zero until the first local minimum is reached. Meanwhile, the optimal bandwidth selector is ensured to be a valid tuning parameter for the central subspace estimator. An important advantage of this estimation technique is its flexibility to allow a response to be discrete and some of covariates to be discrete or categorical providing that a certain continuity condition holds. Under very mild assumptions, we further derive the uniform consistency of the introduced optimization function and the consistency of the resulting estimators. Moreover, the asymptotic normality of the central subspace estimator is established with an estimated rather than exact structural dimension. In extensive simulations, the developed approach generally outperforms the competitors. Data from previous studies are also used to illustrate the proposal. On the whole, our methodology is very effective in estimating the central subspace and conditional distribution, highly flexible in adapting diverse types of a response and covariates, and practically feasible in obtaining an asymptotically optimal and valid bandwidth estimator. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1215987 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1296-1310
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1215987
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().