EconPapers    
Economics at your fingertips  
 

On Theoretically Optimal Ranking Functions in Bipartite Ranking

Kazuki Uematsu and Yoonkyung Lee

Journal of the American Statistical Association, 2017, vol. 112, issue 519, 1311-1322

Abstract: This article investigates the theoretical relation between loss criteria and the optimal ranking functions driven by the criteria in bipartite ranking. In particular, the relation between area under the ROC curve (AUC) maximization and minimization of ranking risk under a convex loss is examined. We characterize general conditions for ranking-calibrated loss functions in a pairwise approach, and show that the best ranking functions under convex ranking-calibrated loss criteria produce the same ordering as the likelihood ratio of the positive category to the negative category over the instance space. The result illuminates the parallel between ranking and classification in general, and suggests the notion of consistency in ranking when convex ranking risk is minimized as in the RankBoost algorithm for instance. For a certain class of loss functions including the exponential loss and the binomial deviance, we specify the optimal ranking function explicitly in relation to the underlying probability distribution. In addition, we present an in-depth analysis of hinge loss optimization for ranking and point out that the RankSVM may produce potentially many ties or granularity in ranking scores due to the singularity of the hinge loss, which could result in ranking inconsistency. The theoretical findings are illustrated with numerical examples. Supplementary materials for this article are available online.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1215988 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1311-1322

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1215988

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1311-1322