EconPapers    
Economics at your fingertips  
 

Fixed- Asymptotic Inference About Tail Properties

Ulrich K. Müller and Yulong Wang

Journal of the American Statistical Association, 2017, vol. 112, issue 519, 1334-1343

Abstract: We consider inference about tail properties of a distribution from an iid sample, based on extreme value theory. All of the numerous previous suggestions rely on asymptotics where eventually, an infinite number of observations from the tail behave as predicted by extreme value theory, enabling the consistent estimation of the key tail index, and the construction of confidence intervals using the delta method or other classic approaches. In small samples, however, extreme value theory might well provide good approximations for only a relatively small number of tail observations. To accommodate this concern, we develop asymptotically valid confidence intervals for high quantile and tail conditional expectations that only require extreme value theory to hold for the largest k observations, for a given and fixed k. Small-sample simulations show that these “fixed-k” intervals have excellent small-sample coverage properties, and we illustrate their use with mainland U.S. hurricane data. In addition, we provide an analytical result about the additional asymptotic robustness of the fixed-k approach compared to kn → ∞ inference.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1215990 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1334-1343

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1215990

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1334-1343