Two-Level Orthogonal Screening Designs With 24, 28, 32, and 36 Runs
Eric D. Schoen,
Nha Vo-Thanh and
Peter Goos ()
Journal of the American Statistical Association, 2017, vol. 112, issue 519, 1354-1369
Abstract:
The potential of two-level orthogonal designs to fit models with main effects and two-factor interaction effects is commonly assessed through the correlation between contrast vectors involving these effects. We study the complete catalog of nonisomorphic orthogonal two-level 24-run designs involving 3–23 factors and we identify the best few designs in terms of these correlations. By modifying an existing enumeration algorithm, we identify the best few 28-run designs involving 3–14 factors and the best few 36-run designs in 3–18 factors as well. Based on a complete catalog of 7570 designs with 28 runs and 27 factors, we also seek good 28-run designs with more than 14 factors. Finally, starting from a unique 31-factor design in 32 runs that minimizes the maximum correlation among the contrast vectors for main effects and two-factor interactions, we obtain 32-run designs that have low values for this correlation. To demonstrate the added value of our work, we provide a detailed comparison of our designs to the alternatives available in the literature. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1279547 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1354-1369
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1279547
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().