EconPapers    
Economics at your fingertips  
 

Finding Common Modules in a Time-Varying Network with Application to the Gene Regulation Network

Jingfei Zhang and Jiguo Cao

Journal of the American Statistical Association, 2017, vol. 112, issue 519, 994-1008

Abstract: Finding functional modules in gene regulation networks is an important task in systems biology. Many methods have been proposed for finding communities in static networks; however, the application of such methods is limited due to the dynamic nature of gene regulation networks. In this article, we first propose a statistical framework for detecting common modules in the Drosophila melanogaster time-varying gene regulation network. We then develop both a significance test and a robustness test for the identified modular structure. We apply an enrichment analysis to our community findings, which reveals interesting results. Moreover, we investigate the consistency property of our proposed method under a time-varying stochastic block model framework with a temporal correlation structure. Although we focus on gene regulation networks in our work, our method is general and can be applied to other time-varying networks. Supplementary materials for this article are available online.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1260465 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:519:p:994-1008

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1260465

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:994-1008