A Probabilistic Record Linkage Model for Survival Data
Michel H. Hof,
Anita C. Ravelli and
Aeilko H. Zwinderman
Journal of the American Statistical Association, 2017, vol. 112, issue 520, 1504-1515
Abstract:
In the absence of a unique identifier, combining information from multiple files relies on partially identifying variables (e.g., gender, initials). With a record linkage procedure, these variables are used to distinguish record pairs that belong together (matches) from record pairs that do not belong together (nonmatches). Generally, the combined strength of the partially identifying variables is too low causing imperfect linkage; some true nonmatches are identified as match and, on the other hand, some true matches as nonmatch. To avoid bias in further analyses, it is necessary to correct for imperfect linkage. In this article, pregnancy data from the Perinatal Registry of the Netherlands were used to estimate the associations between the (baseline) characteristics from the first delivery and the time to a second delivery. Because of privacy regulations, no unique identifier was available to determine which pregnancies belonged to the same woman. To deal with imperfect linkage in a time-to-event setting, where we have a file with baseline characteristics and a file with event times, we developed a joint model in which the record linkage procedure and the time-to-event analysis are performed simultaneously. R code and example data are available as online supplemental material.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1311262 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1504-1515
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1311262
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().